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SUMMARY

A flow survey has been made of the test section of the NASA Langley 16-Foot
Transonic Tunnel at subsonic and supersonic speeds. Local test section upflow
and sideflow angles and Mach number were measured to determine the
flowfield characteristics of the empty test section. The survey was performed
using five five-hole pyramid-head probes mounted at 14 inch intervals on a
survey rake. Probes were calibrated at freestream Mach numbers from 0.50 to
0.95 and from 1.18 to 1.23. Test section flowfield surveys were made at Mach
numbers from 0.50 to 0.90 and at Mach 1.20. Flowfield surveys were made at
tunnel stations 130.6, 133.6 and 136.0. By rotating the survey rake through
180 degrees, a cylindrical volume of the test section 4.7 feet in diameter and
5.4 feet long centered about the tunnel centerline was surveyed.

Results show that the test section flowfield is characterized by upflow and
sideflow components that diverge away from the tunnel centerline, with an
apparent clockwise swirl when viewed looking upstream. The flow divergence
away from the centerline is attributed to the test section slotted walls. In the
survey volume, local flow angles vary little in the longitudinal axis. At subsonic
speeds, in the vertical plane through the tunnel centerline, upflow angles vary
from about -0.3 degree at the lower edge of the survey area to about +0.9
degree along the upper edge, with a nominal upflow angle of about +0.1 degree
along the tunnel centerline. In the horizontal plane through the tunnel
centerline, sideflow angles (positive toward the inner wall of the tunnel circuit)
vary from about -0.7 degree on the outside edge of tunnel circuit (left side of
test section) to about +0.8 degrees along the inside edge of circuit, with a
sideflow angle of about +0.1 degree along the tunnel centerline.

At supersonic speeds the test section flowfield is more complex than at
subsonic speeds. The flow exhibits a clockwise swirl with localized regions of
larger flow angles. The overall variation in the measured upflow and sideflow
angles across the entire survey area is about 1 degree. The nominal upflow and
sideflow angles along the tunnel centerline are about 0.15 degrees.

The measured local Mach number distributions show a uniform Mach number
distribution over the portion of the test section surveyed.

INTRODUCTION

A test section flowfield survey was performed as part of the 1991 16-Foot
Transonic Tunnel calibration. Local test section flow angle and Mach number
measurements were made with a set of five-hole pyramid-head flow angularity
probes. The test effort consisted of individual probe calibrations, followed by
flowfield surveys of the test section at three tunnel stations and Mach numbers
from 0.50 to 1.20.

This report documents the survey probe calibration techniques used,
summarizes the procedural problems encountered during testing, and
identifies the data discrepancies observed during the post-test data analysis.



The report outlines the approaches taken to adjust the measured flow angle
data for apparent data discrepancies, establishes the level of uncertainty of the
data, and presents the flowfield characteristics obtained. Recommendations
for ways to improve data quality by reducing the test uncertainties are provided.

Nomenclature

m
CpP13
Cr13
Cp24
Cm
m

M)
M,
Pl
P2
P3
P4
P5
Pa
Pavg
Pt
Ptank
P,

TS

AP13

Intercept of survey probe calibration curve fit
Survey probe pressure coefficient

Survey probe pressure coefficient = (AP13) / (P5 - Pavg)
Survey probe pressure coefficient = (AP24) / (P5 - Pavg)

Mach number coefficient = (P1 + P2 + P3 + P4) / PS5

Slope of survey probe calibration curve fit
Local probe Mach number (from probe Mach coefficient)
Freestream Mach number

Individual probe static pressure (12 o'clock position), psia
Individual probe static pressure (3 o'clock position), psia
Individual probe static pressure (6 o'clock position), psia
Individual probe static pressure (9 o'clock position), psia
Individual probe total pressure (center of probe tip), psia

Atmospheric pressure, psia
Average survey probe pressure = (P1 + P2 + P3 +P4) / 4
Tunnel freestream total pressure, psia

Tunnel freestream static (plenum) pressure, psia
Freestream static pressure, psia

Tunnel Station, feet

Distance along gravity axis in longitudinal direction, feet
Distance along gravity axis in lateral direction, feet
Distance along gravity axis in vertical direction, feet
Distance along wind axis in longitudinal direction, feet
Distance along wind axis in lateral direction, feet
Distance along wind axis in vertical direction, feet
Freestream velocity, ft/sec

Pitch angle, deg

Yaw Angle, deg

Upflow angle, deg

Vertical rake misalignment, deg

Differential probe pressure between P} and P3, psid
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AP24 Differential probe pressure between Pg and P4, psid

Eay Upflow error due to vertical misalignment, deg

8Bv Sideflow error due to vertical misalignment, deg
Vertical misalignment, deg

Sideflow angle, deg

&v

0 Upflow angle, deg

L 4

¢ Survey rake roll angle (measured from vertical axis), deg

APPARATUS AND PROCEDURES

Test Facility and Instrumentation

Wind Tunnel and Model Support This investigation was conducted in the
Langley 16-Foot Transonic Tunnel. The facility is a single return, continuous

flow, atmospheric wind tunnel with a test section of octagonal cross-section.
To provide transonic capability the test section has slots located at the corners
of the octagon that vent the test section to a plenum surrounding the test
section . The test section wall divergence is adjusted as a function of airstream
Mach number to minimize the longitudinal static pressure gradient in the test
section. Further information on the wind tunnel can be found in References 1
and 2.

As shown in figure 1, the flowfield survey rake was attached to an adjustable
support sting that was mounted off the tunnel support strut. The support sting
held the survey rake at the test section centerline at all pitch angles (during
probe calibrations). The offset sting allowed the rake to be manually positioned
at selected tunnel stations. The tunnel support strut provided the capability to
roll the rake assembly using the strut head roll mechanism.

Flow Survey Rake Local flow angle measurements were made with five-hole
pyramid-head flow angularity probes. A sketch of a probe is shown in figure 2.
Each probe was instrumented with four static taps, one on each face of the
pyramidal tip, and a total pressure tap at the apex. As shown in figure 3, the
five probes were equally spaced at 14 inch intervals along the leading edge of a
survey rake, providing a maximum survey radius of 28 inches about the tunnel
centerline. A photograph of the survey rake installed in the 16-Foot Transonic
Tunnel is shown in figure 4.

Instrumentation A schematic of the instrumentation setup used for each
probe is shown in figure 5. Individual pressure transducers were used to
measure the probe static pressures at orifices 1 and 2 (P1 and P2), the
pressure difference between opposing pressure orifices 1 and 3 (AP13) and
orifices 2 and 4 (AP24), and the probe stagnation pressure at orifice 5 (P5).
The absolute pressures P3 and P4 were computed from the opposing pressure
and differential pressure measurements. Instrumented as such, two orthogonal
flow angles were measured with each probe; the flow angles being proportional
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to the pressure difference between the opposing pressure orifices. The survey
probe pressure transducers were sized to provide the best accuracy at subsonic
and supersonic speeds.

The survey rake was instrumented with a pitch angle transducer mounted
parallel to the offset sting (i.e. horizontal when the rake is leveled) on the back
of the wedge shaped forward sting strut. The survey rake pitch angle was
measured in the vertical (gravity) plane. The transducer was calibrated with
the rake oriented vertically and with the rake rolled to the horizontal to
account for any variations that might occur as a result of rolling the rake.

Probe Calibration Procedures

Probe calibrations were performed at Mach numbers from 0.50 to 0.95 and
from Mach 1.18 to 1.23. The procedure for calibrating the probes consisted of
varying the rake pitch angle from at least -3 to +3 degrees while the rake was
oriented vertically (as shown in figure 4). The probes were installed at fixed
roll positions. The components of each probe were calibrated by rolling the
individual probes in 90 degree increments relative to the rake, until each
orthogonal component was run in an upright and inverted position.

A typical variation in the measured probe pressures with pitch angle is shown
in figure 6. Over the pitch angle range shown, the variation in the individual
static and differential static pressures are linear, with little variation in total
pressure.

Probe sensitivities which relate the measured pressures to local flow angles
were computed from the calibration results. The probe sensitivities are
defined as:

Cp, 3 = Pressure coefficient based on probe pressures Pl & P3,

Cpy3 = P13} / (PS5 - Pavg)
Cpgy4 = Pressure coefficient based on probe pressures P2 & P4,
Cpgy = (AP24) / (P5 - Pavg)

where Pavg = (P1 + P2 + P3 +P4) / 4

With the probes properly installed in the survey rake, orifices 1 and 3 measure
flow angles in the plane of the rake. Orifices 2 and 4 measure flow angles
perpendicular to the rake. In the subsequent discussions, these two flow
components are referred to as the "parallel” and "perpendicular” flow angles.
The corresponding probe sensitivities are also referred to as "parallel” and
"perpendicular” sensitivities.

Figure 7 (taken from Reference 3) shows the characteristics of the survey
probe pressure coefficient as a function of probe pitch angle for a probe in an
upright and inverted position. The slope and point of intersection of the two
pressure coefficient (Cp) distributions determine the probe calibration
sensitivities. By definition, the slope of the upright and inverted calibration
curves should be equal, but opposite in sign. The point of intersection
establishes the local upflow angle; the vertical offset is attributed to the probe
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misalignment. An example of the probe calibration characteristics obtained for
the current test is shown in figure 8. A summary of the calibration results
showing the computed slopes, vertical offsets and upflow angles are presented
in Tables I and II for the parallel and perpendicular components, respectively.
The quantity defined as the percent difference in slope is an indication of the
repeatability of the upright and inverted calibrations. A five percent difference
is equivalent to an uncertainty of about 0.05 degrees at a local flow angle of 1
degree. Since the measured flow angles are typically less (smaller than 1
degree) the effect of the difference in slope is less than the measurement
capability of the probe. Results obtained with probes whose difference in slope
is large (i.e. probe 2 and the supersonic calibrations) have been taken into
consideration as to how these results fit into the overall trends.

Local tunnel upflow and sideflow angles are presented in the wind axis
convention shown in figure 9 (taken from Reference 4). All flow angle data is
presented as if viewed looking downstream, with positive upflow angles
directed upward and positive sideflow angles directed to the left (toward the
inside of the tunnel circuit).

Survey probe Mach number coefficients (Cm) were computed from the probe
calibration results and used in the table look-up routine to determine the local
probe Mach number and the corresponding local flow angle.

Measurement Accuracy and Data Reduction Problems

Measurement uncertainty in the local flow angles can be attributed to the
following factors:

Pressure measurement error
Rake pitch angle measurement error
Sting and rake misalignment
Rake lift induced flow angles

Ll el i

The significance of each of these factors and what adjustments were made
during the data reduction process are addressed below.

Pressure Measurement Errors As discussed above, the local flow angles are
directly proportional to the difference in pressure measured across the probe.
Any uncertainty in the pressure measurements has a direct impact on flow
angle uncertainty. An uncertainty analysis was performed to assess the effect of
pressure measurement uncertainty on the flow angle uncertainty. The
uncertainty in the pressure measurement is typically quoted at 0.5 percent of
the transducer range. On this basis, the uncertainty in flow angle as a result of
pressure measurement uncertainty is less than 0.03 degrees at all Mach
numbers.

The most significant problem encountered during the test was the time
required for the survey probe pressures to settle after a change in test
condition (i.e. Mach number, angle of attack or rake roll angle). The small
orifices (.020 dia.) at the tip of the survey probe and long tube runs between
the tap and the pressure transducer (approximately 130 feet of tubing



increasing in size from 0.040 to 0.060 inch diameter) made the settling time of
the probe pressures significant. The time required for the pressures to settle
out typically ranged 4 to 5 minutes at each test point. The extent of the data
base acquired was therefore limited by the available test time.

Sting Misalignments Prior to each run, the sting was leveled using an
inclinometer mounted on the cylindrical portion of the sting, just behind the
survey rake. Due to procedural problems in positioning the inclinometer
consistently on the sting, discrepancies occurred in leveling the sting prior to
each run. These discrepancies were corrected by using the pitch angle
transduicer as an absolute instrument.

Sting deflections during the flow survey due to aerodynamic loads were
assumed to be negligible.

Calibrations of the pitch angle transducer were performed with the rake
oriented vertically and while rolled to the horizontal. The two calibrations
were essentially the same, indicating that the measured rake pitch angle
should therefore be independent of rake roll angle.

The variation in wind-off rake pitch angle with survey rake roll angle (¢) is
shown in figure 10. The increase in rake angle of attack at roll angles above

90° suggests that the pitch angle variation is not due to the sting deflections
alone. The sinusoidal variation in pitch angle indicates that the pitch angle
transducer and/or the sting is not aligned with the main tunnel support strut
roll axis. The result is a conical motion about the strut roll axis as the rake is
rolled. An independent strut head pitch angle measurement indicated that a
vertical sting misalignment and/or deflection did exist, since the main tunnel
strut head had to be set at an angle of attack of about 0.19 degree to level the
sting at the survey rake. This difference was originally attributed solely to sting
deflections due to the weight of the survey rake. However, the variation in the
measured pitch angle with roll angle suggests that this is in part a rigid
misalignment problem, and not only a result of sting deflections. Sting
deflections alone would not vary with roll angle, except for minor sting/strut
torsional deflections which would be a maximum at a 90 degree roll angle.

The variation in the measured pitch angle (figure 10) provides information
from which to estimate the misalignment characteristics. Since the sting is

leveled at ¢ = 0°, the pitch angle error (in vertical direction) is assumed to be

zero. The measured pitch angle at ¢ = 180° is the error due to the vertical
misalignment (~ 0.2 degree). The approach used to describe the motion of the
survey rake in the vertical and lateral directions, as the rake is rolled, is shown
in figure 11. Since the sting rotates about the strut centerline the apparent
motion of the rake center is circular. As shown in figure 12a, applying these
adjustments for a vertical misalignment to the measured pitch angle data does

not fully account for apparent pitch angle error at ¢ = 90° (rake horizontal).
An additional adjustment is required.



Since the negative peak in pitch angle occurs at ¢ = 659 in figure 10, the rake
installation also has a lateral misalignment, the magnitude of which can be
inferred from the pitch angle error remaining after the rake is rolled to the

horizontal (¢ = 909) and the vertical misalignment adjustments are applied.
The approach used to describing the motion of the rake center position as a
result of a lateral misalignment is shown in figure 13. After applying
adjustments for the vertical misalignments the apparent error in pitch angle
due to a lateral misalignment is about 0.18 degree.

The validity of this approach is apparent when the agjustments for vertical and
lateral misalignments are applied to the measured rake pitch angle. As shown
in figure 12b, subtracting the adjustments due to the vertical and lateral
misalignments from the measured rake pitch angle leaves a near zero condition
at all roll angles. The validity of these adjustments to sideflow cannot be
established since no measurements were made to check for sting misalignment
in this direction. The magnitude of the corresponding lateral adjustments are
shown in figure 14. The combined effect of the adjustments for vertical and

lateral sting misalignment is as much as 0.2 degree at a rake roll angle of 150°.

It should be noted that the discrepancies referred to as a sting misalignment is
the result of numerous factors. The adjustments applied above only account for
the most obvious. The inability to account for all of the discrepancies only
serves to emphasize the complexity of the sting deflections and misalignments
involved.

It has been shown that the measured survey rake pitch angle effectively
accounts for the vertical and lateral misalignments in the vertical direction at
all roll angles. In the subsequent discussions, the effect of sting misalignment
on the measured upflow angle has been accounted for by subtracting the
measured nonzero survey rake pitch angle from the measured upflow angle.
Since direct measurement of rake lateral position was not made, the
adjustments to sideflow have been made by subtracting the estimated vertical
and lateral misalignment errors (figure 14) from the measured sideflow angles.

The design of the sting provides for repositioning the rake by sliding the sting
forward or aft in the saddle located at the aft sting strut (see figure 1). This
capability introduces the potential for variation in the sting misalignment
adjustments with sting extension. A check of the misalignment characteristics
at the forward survey position (TS 130.6) showed that the required adjustment
did indeed change, with the discrepancies associated with the sting
misalignment increasing with sting extension. The misalignment adjustments
applied as a function of the tunnel station (TS) are summarized below:

Adjustments for Sting Misalignment
TS Vertical Lateral

130.6  0.18 deg -0.25 deg
133.6 0.13 -0.22
136.0 0.09 -0.20



With the sting extended to the forward most survey position, and a lateral
misalignment angle of 0.25 degree, the displacement in the actual center
probe location from the nominal centerline location is less than 0.6 inches
(1/20th of the spacing between the probes). In the subsequent discussions,
since the probe displacement is relatively small, no attempt has been made to
track the repositioning of the probe due to the sting misalignments. All
reference to probe position are made with respect to their nominal (aligned)
locations.

Adjustments for Rake Lift Previous pyramid probe calibrations performed in
the NASA Langley 7 x 10 Foot Tunnel and documented in Reference 3
indicated that flow angles measured perpendicular to the rake plane of
symmetry could be affected by rake lift, or by the rake inducing a flow angle at
the probe tip which varies with angle of attack. A check of the effect of rake
lift on the probe sensitivities was made by varying the rake pitch angle with the
rake rolled to the horizontal. A comparison of the probe sensitivities
(calibration slopes) obtained with the rake vertical (no lift) and with the rake
horizontal (with lift) is shown in figure 15. The comparison confirms that the
probe sensitivities are indeed affected by the rake lift, as evidenced by the
increase in slope of the calibration curve when the rake is horizontal.

Since the lift induced flow angle increments occur only in the plane
perpendicular to the rake spanwise plane of symmetry, only the perpendicular
probe sensitivities need to be adjusted for rake lift effects. The probe
calibration data presented in reference 3 were used to establish corrections for
the perpendicular probe sensitivities. The data provided an adjustment
increment as a function of Mach number and probe spanwise position on the
rake. The correction for rake lift represents an increment in the probe
calibration sensitivity (slope), the vertical offset not being affected. A plot of
the spanwise variation in the difference between the rake vertical (no lift) and
rake horizontal (with lift) probe sensitivities (calibration curve slopes) at M =
0.80 is shown in figure 16. The corresponding differences extracted from
Reference 3 are also presented for comparison. The trends show a symmetric
spanwise variation which is consistent with the expected survey rake lift
distribution, the probe at the center of the rake requiring the largest
adjustment.

During the current investigation, the data required to identify the rake lift
effects on the perpendicular probe sensitivities were only obtained at Mach
0.80. As shown in figure 17, the data from Reference 3 indicates that the
effect of rake lift is a function of Mach number, as well as the spanwise position.
These data were therefore used to establish the necessary rake lift adjustments
at other subsonic Mach numbers. Assuming spanwise symmetry, a nominal
probe sensitivity increment was established from the available data base. A
cross-plot of the variation in the sensitivity increment with Mach number is
presented in figure 18. The trends show that at Mach numbers below about 0.7
the effect of rake lift on probe sensitivities is nearly constant. Above Mach 0.7
the effect of rake lift decreases with Mach number. The available data from the
current test (symbols at M = 0.80) were used to adjust these trends and
extrapolations to Mach 0.95 were made. No rake lift adjustments were made to



the supersonic calibration data. The actual increments applied to the
perpendicular probe calibration slopes are listed in Table II.

It should be noted that since the measured flow angles are relatively small, the
lift induced flow angles are also small. Local flow angle uncertainties
introduced by the approach outline above are therefore expected to be minimal.

Rake Misalignment An example of the variation in measured upflow and
sideflow angles with rake roll angle is shown in figure 19. The data are
presented for the centerline probe (no. 3) at Mach 0.80 and TS 133.6. The
adjustments for sting misalignment and rake lift have been applied. The
dashed lines represents the nominal zero rake lift condition for each flow angle
component. Since the centerline probe remains in the approximately the same
position as the rake is rolled, the measured upflow and sideflow angles should
be constant if the proper sting misalignment and rake lift induced flow angle
adjustments have been applied. This obviously is not the case. The variation in
upflow angle indicates an effective increase in the probe angle of attack as the

rake rolls through ¢ = 900- The upflow angle then returns to nearly the same
flow angle at ¢ = 1800- The sideflow angle decreases as the rake rolls through

¢ = 1800. These trends are indicative of a misalignment between the probe
axis and the support sting. In effect, the axis of the survey probe is not aligned
with the axis of the sting.

Since the angle of attack measurement was shown to correctly account for
sting misalignment in the vertical direction, and individual probe
misalignments in the plane of rake spanwise symmetry were effectively
accounted for with the probe calibrations, these discrepancies are attributed to
a rake to sting misalignment which effectively changes the probe upflow and
sideflow angle as the rake rolls. As such, the rake misalignment correction to
upflow is zero when the rake is vertical. It should be noted that the relatively
large magnitude of the apparent upflow discrepancy is greater than what is
thought to be the capability of the flow angle measurement, and the consistent
character of the upflow trends with roll angle (gradual increase and decrease)
suggests that the discrepancies are not due to a random measurement error.

As noted above the survey probe calibrations account for any probe to sting
misalignment in the vertical direction (in rake spanwise direction at ¢ = 00

and 1800). The effect of rake misalignment therefore exists only in the lateral
direction. The approach used to correct for rake lateral misalignment is
outline in figure 20. The adjustments for rake misalignment can only be
obtained from the wind-on test results. The data presented in figure 19 were
used to establish that the apparent magnitude of the rake misalignment, based
on the upflow angle variation, is about 0.20 deg. However, as shown in figure
21, after adjustments are made for the rake lateral misalignment, the adjusted
upflow and sideflow angles still exhibit some variation with rake roll angle.
This suggests that the combined sting and rake misalignments are more
complex that the simple misalignments assumed above. However, the
necessary sting and rake alignment data needed to resolve these problems is
not available.



Since no changes were made in the probe to sting installation during the tesi
(i.e. not disassembled), the rake misalignment adjustment factor was assumed
to be independent of sting extension (i.e. tunnel station).

The variation in the center probe upflow and sideflow angles after applying all
adjustments for sting and rake misalignments and rake lift effects provides a
level of uncertainty for the individual flow angle measurements. Based on the
results shown in figure 21, the uncertainty in the measured upflow angle is
less than 0.05 degree. The uncertainty in sideflow angle could be as large as
0.15 degree when the rake is oriented vertically (¢ = 0° and 18090), but drops

to less that 0.05 degree when the rake is oriented horizontally (¢ = 909), the
sideflow angles actually being measured by the parallel taps.

Other Sources of Data Discrepancies In addition to the sting and rake
misalignment problems discussed above, additional discrepancies in the
individual probe data were encountered that can be attributed to such things as
bent probes, improper probe installation, and unsettled pressures.

The characteristics of a bent probe on the individual probe calibration is shown
in figure 22. The number 5 probe (at the bottom of rake) was bent when it was
inadvertently bumped by a technician. The bending of a probe (after the
calibration process had begun) is characterized by a shift in the calibration
curves without a change in slope or indicated upflow angle. This represents a
change in the probe alignment relative to the sting and is accounted for by
shifting the probe calibration.

Inconsistencies in the probe calibration characteristics between individual
calibration runs are attributable to an improperly installed probe. The survey
rake is designed such that each probe is held in place with a set screw. If the
probe is not installed properly a change in the probe alignment can occur. The
effect of an improper probe installation on the probe calibration is shown in
figure 23. The data show good repeatability except for Run 7. The slope and
linearity of the data is nearly the same, except that Run 7 shows a small shift.
Although the shift is characteristic of a bent probe, the repeatability of the runs
made after Run 7 indicate that the discrepancy is not a result of the probe
being bent. '

As mentioned previously, the probes have small orifices in the tip and long
instrumentation tubing runs (a relatively large volume) which resulted in
significant settling times for the pressure measurements. The effect of taking
data before the pressures were settled is shown in figure 24. The repeatability
and linearity of the calibration data is adversely affected. During the post test
data analysis each data point was evaluated with respect to the overall
calibration trends. Data that was felt to exhibit any of the above discrepancies
were deleted from the individual probe calibration data base.

Finally, it should be nnted that uncertainties introduced by the apparent sting
and rake misalignments affect only the absolute magnitude of the measured
flow angles. Tiiis in effect is an uncertainty in the magnitude of the reference
flow angle, defined as that flow angle measured along the test section
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centerline. The differences between the flow angles measured on the
centerline and those measured at the outboard rake locations is still indicative
of the vertical and lateral variations that exist across the test section.

RESULTS AND DISCUSSIONS
Tunnel Centerline Axes Flow Angle Characteristics

f Survey Pr As discussed in the
Apparatus and Procedures section, test section upflow angles were obtained
directly from the survey probe calibrations. Upflow angles measured at TS
133.6, in the vertical plane passing through the tunnel centerline, are shown in
figure 25, for freestream Mach numbers from 0.50 to 1.23. Two sets of data
are presented, one based on pressures P1 and P3, the other based on pressures
P2 and P4 (see figure 5). In each case, the rake is vertical (¢ = 00) and the
individual probes have been rolled to align the taps with the rake spanwise
plane of symmetry (no rake lift effects). The data show that the upflow angles
are largest at locations off the tunnel centerline. At a position 2.3 feet above
the tunnel centerline the upflow angles are about +0.55 degree at Mach
numbers below about 0.85, increasing to about +0.90 degree at Mach 0.95.
Along the tunnel centerline the upflow angle is nearly zero at the lower
subsonic Mach numbers and increases to about +0.10 degree at Mach 0.95.
Below the centerline the upflow angle is about -0.20 degree at Mach numbers
below 0.85, with the flow angle diverging away from the centerline at higher
Mach numbers. The data show good correlation between the two probe
components at all Mach numbers, providing a relative accuracy for the flow
angle measurements and confidence in the probe calibrations. The differences
are typically smaller than the nominal upflow angle at each spanwise location.

The flow divergence away from the tunnel centerline is attributed to the effects
of the slotted test section. The increase in upflow angle at locations off the
tunnel centerline at Mach numbers above 0.80 is consistent with the variation
in the test section wall (flat) divergence angle at high subsonic Mach numbers.
In the 16-foot tunnel, flat divergence is used at Mach numbers above 0.83 to
achieve a zero centerline Mach gradient (dM/dx = 0). The variation in wall
flat divergence with Mach number is shown in figure 26. The variation in the
upflow angles with Mach number is attributed in part to the variation in tunnel
wall divergence angle.

Upflow angle characteristics at supersonic speeds are also shown in figure 25.
The local supersonic upflow angles varies from about +0.15 degree above the
centerline to about +0.35 degree below the centerline. The predominant flow
direction is towards the top of the test section. This may in part be attributable
to the fact that at supersonic speeds the test section air removal system is
operating and some flow asymmetry may result from the air removal process.

Flowfield Survey Locations Test section flowfield surveys were made over a
circular cross section of the tunnel by rotating the survey rake from the vertical

through 180 degrees. Local flow angles were measured parallel and
perpendicular to the rake and then resolved to the tunnel wind axis coordinate
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system. Flowfield surveys were made with the rake positioned at tunnel
stations 130.6, 133.6 and 136.0. A sketch showing the rake roll angle
increments used at each survey location is shown in figure 27. Tunnel station
134.0 is considered the longitudinal center of the test section. The survey at
tunnel station 136.0 was limited to a maximum rake roll angle of 1420 because
of interference between the retracted sting and the main tunnel support strut.

11 Surv The variation in test section upflow
angles along the vertical centerline at TS 130.6, 133.6 and 136.0 and Mach
0.80 are shown in figure 28. The upflow angles were measured with the
parallel taps (P1 and P3). The comparison of local upflow angles obtained with

the rake at ¢ = O° and rolled to ¢ = 1800 shows that the flow angle resolution
procedure correctly accounts for the probes being inverted. The comparison
shows good agreement between the measured flow angles at either rake roll
angle. The flow angles measured at TS 133.6 show good agreement between
the probe calibration results presented in figure 25.

The variation in the test section upflow angles with Mach number at TS 130.6,
133.6, and 136.0 are shown in figure 29. The upflow data are those measured

along the vertical centerline with the rake positioned at ¢ = 0° and ¢ = 1809,
In general, the upflow angles trends at all tunnel stations are similar to those
obtained with the probe calibrations. Along the centerline, the local upflow
angle is typically about 0.10 degree, increasing to about +0.40 degree 1.2 feet
above the centerline, and -0.20 degree 1.2 feet below the centerline. At all
tunnel stations, the local upflow angles at a distance of 2.3 feet from the
centerline exhibit an increase in the flow divergence away from the test section
centerline at Mach numbers above 0.80. The apparent differences between the
probe calibration results (figure 29b) and the flow surveys are within the flow
angle uncertainties previously established.

The variation in upflow angle with tunnel station is shown in figure 30 for Mach
0.6, 0.8 and 0.9. The trends are consistent with those presented in figure 28
and show that there is little variation in upflow angle in the tunnel streamwise
(longitudinal) direction.

Test section sideflow angles measured
across the horizontal plane containing the tunnel centerline were obtained
using local flow angles measured by the parallel taps (P1 and P3) with the rake
rolled to the horizontal (¢ = 909). As such, the parallel taps lie in the plane of
rake spanwise symmetry and are not affected by rake lift. (The measured
sideflow angles have been adjusted for probe and sting misalignments.) The
sideflow characteristics at TS 130.6, 133.6 and 136.0 are shown in figure 31.
The data show that the tunnel sideflow angle is about +0.1 degree at the center
of the tunnel, with the flow diverging away from the center at locations off of
the test section centerline. At the outermost probe location (2.3 feet off the
centerline) the local sideflow angles are as large as (+/-) 0.90 degree.

Supersonic sideflow angles are also shown in figure 31. In general, the largest

supersonic sideflow angles are observed on the left side of the test section
(looking downstream) closest to the point where the test section air removal
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takeoff ducting is located. The sideflow angles on the outside of the tunnel
circuit (right) are small and tend to diverge away from the centerline at the
downstream station.

A cross-plot of the subsonic sideflow angles at each tunnel station and at Mach
0.6, 0.8 and 0.9 is presented in figure 32. The data show that the variation in
sideflow angle across the horizontal (lateral) centerline is nearly linear, with a
gradient of about 0.3 degree per foot. Along the tunnel centerline the sideflow
and is about 0.1 degree. In the direction towards the inside of the tunnel
circuit (+Y), the sideflow angle increases to an average of about +0.80 degree at
a location 2.3 feet from the centerline. Towards the outside of the tunnel
circuit (-Y), the sideflow angle increases to average of about -0.70 degree,
directed away from the centerline at each station. The variation in sideflow
angles with tunnel station is small.

Subsonic Flowfield Contours

Test section upflow and sideflow angle contours are presented for tunnel
stations 130.6, 133.6 and 136.0 in figures 33, 34 and 35, respectively. At each
tunnel station the local flowfield characteristics are presented for Mach
numbers 0.6, 0.8 and 0.9. The data are presented in the wind axes (see figure
9) as if viewed looking downstream through the test section. In general, the
flowfield characteristics are similar at all tunnel stations and Mach numbers.
The streamwise variation (with tunnel station) of the local flow angles is small.
The upflow contours exhibit a line of symmetry (zero upflow angle) extending

diagonally across the test section from about 10 o'clock (¢ = -60°) to 4 o'clock

(¢ = 1209) . The sideflow contours are symmetrical about a vertical line
located slightly to the right (-Y direction) of the vertical centerline. In each
case, the flowfield is characterized by an increase in the local upflow and
sideflow angles in a direction perpendicular to the respective lines of

symmetry.

The magnitude of the local flow angles away from the center of the test section
increases with Mach number. This increase is characterized by the larger flow
angles measured at the outside edge of the survey area and a tightening of the
flow angle contours at Mach 0.9. As mentioned above, this trend is attributed
to the effect of an increase in test section wall divergence at Mach numbers
above 0.83.

The flowfield vectors shown for the Mach 0.8 conditions (parts ¢ and d of
figures 33 through 35) are indicative of the relative magnitude of the test
section crossflow components and indicate that the upflow and sideflow
contours are characteristic of an asymmetric swirl about the tunnel centerline.
The largest crossflow components exist in the lower left quadrant of the test
section.

Supersonic Flowfield Characteristics

The variation in upflow and sideflow angles measured with the center probe
(no. 3) at Mach 1.20 is shown in figure 36. The data have been adjusted for
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misalignments and are shown for the forward two tunnel stations at which the
supersonic flow surveys were made. These data are presented to establish a
relative uncertainty in the flow angle measurements. Although the data show
repeatable variations in both upflow and sideflow angles as the rake rolls, the
overall variation in the upflow and sideflow angles is 0.20 and 0.30 degree,
respectively.

The variation in the Mach 1.20 upflow and sideflow angles along the vertical

plane containing the tunnel centerline (rake vertical) at ¢ = 0° and 1800 is
presented in figure 37. The trends show good correlation in the upright and
inverted rake data at the outermost and center probe locations. The
differences in the measured flow angles at tunnel stations 130.6 and 133.6 are
small. However, at the locations 1.2 feet from the centerline the upright and
inverted measurements differ significantly. This suggests a measurement
problem with either probe no. 2 or probe no. 4. A similar set of data is
presented in figure 38 for the condition where the rake is rolled to the

horizontal (¢ = 90°). The no. 4 probe sideflow angle measured with the rake
vertical, and the upflow angle measured with the rake horizontal, indicates that
the flowfield has a clockwise swirl component (looking downstream). This is
contrary to the flowfield established by the other probes and is inconsistent
with the previous observed subsonic flowfield characteristics.

To provide a data base from which to develop the supersonic flowfield contours
the no. 4 probe was assumed to have been bent or installed incorrectly, thereby
introducing an offset in the measured flow angle which would have to be
accounted for. Adjustments based on the no. 2 probe data were made to probe
no. 4 flow angles to account for this discrepancy. The magnitude of this
adjustment is apparent in figures 37 and 38. The flowfield contours presented
in figure 39 include this adjustment.

At TS 133.6 the flowfield survey was made at 15 degree increments in rake roll
angle. At TS 130.6 the survey was made at 30 degree increments. As shown in
figures 37 and 38, the differences in the measured flow angles at tunnel
stations 130.6 and 133.6 were small. The local upflow and sideflow angle
contours shown in figure 39 are therefore representative of the flowfield
characteristics which exist at both tunnel stations. In general, the supersonic
contours have symmetry characteristics which are similar to the subsonic

contours. Except for that portion of the survey area at about 6 o'clock (¢ =

1809), the supersonic flowfield also exhibits a counterclockwise swirl similar to
that seen at subsonic speeds. The supersonic contours also include two
localized regions of high flow angles that were not observed at the subsonic
conditions. The existence of apparent pockets of complex flow is not readily
explainable other than to acknowledge that the magnitude of the differences in
flow angles is less than the measurement uncertainty discussed above. The
overall variation in measured upflow angles over the entire test section survey
area iIs about 0.8 degrees (+0.4 to -0.4 degree). The maximum sideflow angle
measured is +0.6 degrees, leading to an overall variation of about 1 degree
across the test section survey area (+0.6 to -0.4 degree).
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Tunnel Centerline Axes Mach Number Distributions

As indicated in the probe calibration section a local Mach number is
determined for each probe at each survey location. Test section Mach number
distributions are presented below in terms of a local Mach number increment

defined as the difference between the freestream Mach number (M) and the
local probe Mach number (Mj).

The variation in the local Mach number increment along the vertical and
horizontal (lateral) centerlines at TS 130.6, 133.6 and 136.0 are shown in
figure 40 and 41, respectively. Along the vertical centerline the local Mach

number increments are presented for the rake upright (¢ = 0°) and inverted

(¢ = 1800). Cross-plots of the local Mach number increments at freestream
Mach numbers of 0.6, 0.8 and 0.9 and the three tunnel stations surveyed are
shown in figures 42 and 43 for the vertical and horizontal centerlines
respectively. Although the incremental Mach numbers are predominately
negative, varying from a nominal -0.002 at low subsonic Mach numbers to about
-0.005 at the near sonic conditions, the variation across the survey area are
typically small. In general, these data indicate a uniform subsonic Mach
number distribution over the portion of the test section survey. At supersonic
speeds the general trend is for positive Mach number increments.

CONCLUDING REMARKS

A flowfield angularity survey has been made of the test section of the NASA
Langley 16-Foot Transonic Tunnel. At subsonic speeds the overall flow angle
trends indicate a flowfield that diverges away from the tunnel centerline, with a
counterclockwise swirl (looking downstream) about the center of the test
section. The magnitude of the local flow divergence increases with an increase
in test section wall divergence for Mach numbers greater than 0.83. The
longitudinal variation in flow angles from tunnel stations 130.6 to 136.0 is
small.

At subsonic speeds the test section upflow angles vary from about -0.3 degree
below the tunnel centerline to about +0.9 degree above the centerline, with a
nominal upflow angle along the centerline of about +0.1 degree. Sideflow
angles vary from about -0.7 degree at the outside of the test section (away from
the tunnel circuit center) to about +0.8 degree at the inside of the tunnel
circuit, with a sideflow angle of about +0.1 degree at the tunnel centerline. For
a model located on the test section centerline, the nominal upflow and sideflow
angle at subsonic speeds is about 0.10 degree.

At supersonic speeds the test section flowfield exhibits a counterclockwise
swirl, with regions of localized high flow angles contributing to a more complex
flowfield than that observed at subsonic conditions. The overall variation in the
measured upflow and sideflow angles across the entire survey area was about
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1.0 degree. For a model located on the test section centerline, the nominal
upflow and sideflow angles at Mach 1.20 is about 0.15 degree.

The local incremental test section Mach number distributions show a uniform
Mach number distribution over the portion of the test section surveyed.

The data discrepancies observed during the data analysis indicate that a more
detailed installation check must be made to quantify the actual sting and rake
misalignments, and to establish, with an acceptable degree of accuracy, the
position and alignment of the survey probes relative to the test section
centerline. A repeatable probe installation procedure is also required and care
must be taken to protect probes from being bent.

NASA Langley Research Center
Hampton, VA 23681-0001
December, 1994
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/-— Probes numbered top to bottom with
rake in vertical position (¢ = O deg)
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A
!
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Probe 2
00 Fj 7.150
Probe 3
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Probe 4
—%::
| !
A -
L Section A-A
Probe 5
—TTTT
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Figure 3. - Flowfleld survey rake details. (Dimensions in inches.)
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Figure 4. - Photograph of the flowfield survey rake and support sting installed in
the 16-Foot Transonic Tunnel.
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Figure 5. - Flowfleld survey probe instrumentation setup.
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© Probe rolled = O deg
O Probe rolled = O deg
< Probe rolled = 180 deg
A Probe rolled = 90 deg
&  Probe rolled = 270 deg
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Figure 6. - Typical survey probe pressure measurement characteristics (Probe 3,
centerline probe} at Mach 0.8.
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—a Adjustment for Vertical Misalignment
— & Adjustment for Lateral Misalignment
—O0—Combined Adjustments
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a. Relative magnitude and effect of vertical and lateral misalignment adjustments
when applied to upflow component.
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b. Effect of misalignment adjustments on measured rake pitch angle.

Figure 12. - Effect of vertical and lateral misalignment adjustments in vertical
(upflow) direction.
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—o— Rake vertical
Probe 1 —a-- Rake horizontal
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Figure 15. - Effect of rake lift on flowfield survey probe calibratio
TS 133.6, Mach 0.80. yP n sensitivity,
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Figure 16. - Spanwise variation in probe sensitivity due to rake lift effects,
Mach 0.80.
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Mach = 0.40
Mach = 0.60
Mach = 0.80
Mach = 0.85

Data from Reference 3
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Figure 17. - Effect of Mach number on the measured spanwise variation in probe
sensitivity due to rake lift effects.
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Figure 18. - Adjustments made to survey probe sensitivities, as a function of Mach
number and spanwise position. to account for rake lift effects.
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Figure 19. - Variation in test section centerline (probe 3) upflow and sideflow angles
with rake roll angle after adjusting for misalignment. Tunnel station
133.6, Mach 0.80.

42



‘JuswuBiresyu rexaje| aqoxd £aaIns 10§ Supunoode syusuNSNfpy - ‘0z Mg

& so¥y o ndw OIS
&25 Uy = ™ : onanadp)
¢ LNINNINVS W 04 LVNOdYDY @ SNOLLVNO®T
: nu_.......mmll

¥
— =
3 _ o Qs s
o 35 Qb (
dw o hmﬁ @) v 9 M.u
v

IS ErF N MOTIdn) () ow Ty

P IV UVINGDWOY oINS U
MddD NO LN IWNIMYSIW Tve SINL 40 1033 34

) . Y-Y io3s
"STIOY IAVY WML SY NOVAVANITD I80ud ML MY TONYHD s 3 /71 X
STONUA] "D M NOMOWS S¥ LNIWNIIIVSIW T TYEIVT Y o — %
(wrrmmrorvsv Fead) NOIIErND Feoud MUIM WOd SILNPOTOV | J:

s1 (¥%) ‘g M NMous sv b iNawNOITYS W AV INRIEN Y . «.U



— 1.0
(7]
T 08
3]
gng 0.6
T o4
g3 o
ég R == a Zero lift
0.0
bt
Ee -0.2
ok 0.4
oy v
n®
N5 .06
=
g -0.8
-1.0
() 30 60 90 120 150 180
Survey rake roll angle, deg
i W 1
1.0
@ o8
e
Q 0.6
w05
%bﬂ 0.4
O.ﬁ 0.2 ) .
3 §steE—tTe—g=— @ To+=0_ . Zero Lift
ég 0.0
bk .0.2
B3 &
Sg 0.4
a o
D% -0.6
o]
T -0.8
s -1.0
0 30 60 90 120 150 180

Survey rake roll angle, deg

Upflow Angle

Figure 21. - Variation in test section centerline (probe 3) upflow and sideflow angles
with rake roll angle after adjusting for sting and rake misalignments.gl
Tunnel station 133.6, Mach 0.80.
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¢ = Rake roll angle
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Figure 27. - Test section flowfield survey locations and roll angle increments (looking
downstream). 50
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Figure 43. - Cross-plot of test section Mach number increments across the horizontal
(lateral) centerline at tunnel stations 130.6, 133.6 and 136.0.
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